Parametric versus Nonparametric Estimation of Diffusion Processes — A Monte Carlo Comparison

نویسندگان

  • George J. Jiang
  • John L. Knight
چکیده

In this paper, a Monte Carlo simulation is performed to investigate the finite sample properties of various estimators, based on discretely sampled observations, of the continuous-time Itô diffusion process. The simulation study aims to compare the performance of the nonparametric estimators proposed in Jiang and Knight (1996) with common parametric estimators based on those diffusion processes which have explicit transition density functions. The simulation results show that, with a large sample over a short sampling period, although all the parametric diffusion estimators perform very well, the parametric drift estimators perform very poorly. However, both the nonparametric diffusion and drift estimators perform reasonably well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric regression: a general methodology

This paper outlines a general approach to non-parametric regression. It provides a discussion of the methdology when applied to the standard normal error univariate nonparametric problem , then outlines how it can be extended to additive models and nonparametric regressions with a variety of diierent error processes. The estimation is provided by Markov chain Monte Carlo schemes that are fast, ...

متن کامل

Nonparametric test for detecting change in distribution with panel data

This paper considers the problem of comparing two processes with panel data. A nonparametric test is proposed for detecting a monotone change in the link between the two process distributions. The test statistic is of CUSUM type, based on the empirical distribution functions. The asymptotic distribution of the proposed statistic is derived and its finite sample property is examined by bootstrap...

متن کامل

A Simulation-Based Comparison Between Parametric and Nonparametric Estimation Methods in PBPK Models

We compare parametric and nonparametric estimation methods in the context of PBPK modeling using simulation studies. We implement a Monte Carlo Markov Chain simulation technique in the parametric method, and a functional analytical approach to estimate the probability distribution function directly in the nonparametric method. The simulation results suggest an advantage for the parametric metho...

متن کامل

Inference in Infinite Superpositions of Non-Gaussian Ornstein–Uhlenbeck Processes Using Bayesian Nonparametic Methods

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein–Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of t...

متن کامل

Stochastic Nonparametric Envelopment of Data: Cross-sectional frontier estimation subject to shape constraints

The field of production frontier estimation is divided between the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper explores an amalgam of DEA and SFA that melds a nonparametric frontier with a stochastic composite error. Our model imposes the standard SFA assumptions for the inefficiency and noise terms. The frontier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997